Monday, 1 July 2013


Statement:-  
The necessary & sufficient conditions for a non-empty subset W of a vector spaceV(F) to be a subspace of V are
( 1)  αW, βW α-βW
(2)  aF, αW aαW

Proof:-                Necessary Condition:-

Let V be a vector space over the field F and W be its subspace.
  W will be a vector space over the same field F.
Also,
          (W,+) is an abelian group.
   If   βW    -βW
          αW, -βW    α+(-β)W (By inverse axiom)
     α-β∊W
Hence,
α∊W, β∊W    α-βW , α,βW
Also,
          W will be closed under scalar multiplication.
   If aF, αW aαW , aF, αW


                   Sufficient Condition:-

Let W be a non-empty subset of a vector space V(F) satisfying the condition-
1- αW, βW  α-β∊W, ∀ α,β∊W
2- aF,  αW  W, aF, αW
     from(1)
          αW, βW    α-βW
      αW, αW    α-αW
i.e.   0W
    The zero vector of V also exists inW.
          0W, βW    0-βW
           W
        βW    W,  βW
Hence,  each element of W have their additive inverse.
            αW,  W
          α-(-β)W
            α+βW
W is closed under vector addition.
   from(2)
          aF, αW    aαW, aF,  αW
i.e.  W is closed under scalar multiplication.
Since,
          All the elements of W are the elements of V. So associativity and community of vector addition are satisfied by elements of W.

0 comments:

Post a Comment