Monday, 1 July 2013


Let V be a vector space over the field F the linear sum of two subspaces W1 and W2 of V written as (W1+W2) and is defined as W1+W2={α1+α2:α1єw1,α2єw2} which shows that each element 0f (W1+W2) is expressible as sum of an element of W1 and an element of W2.
Also,
W1W1+W2 and W2W1+W2
Since,
if αW1 then
α=α+0,where αW1 and 0W2
          αW1+W2
             αW1 αW1+W2
                        W1⊆W1+W2

Similarly,
W2⊆W1+W2

Statement:-

The linear sum of two subspaces of a vector space is also a subspace of same vector space.

 Proof:-

Let W1 and W2 be two subspaces of a vector space V.
Since, W1 and W2 are non-empty set.
              W1+W2ϕ
Let                 α, βW1+W2 and    a, bF then
α=α1+α2 for some α1W1  and α2W2
and             β=β1+β2  for some β1W1  and β2W2
Now,           aα+bβ= a(α1+α2)+b(β1+β2)
  =aα1+aα2+bβ1+bβ2
  =(aα1+aα2)+(aα2+bβ1)
Since                   W1 is a subspace.
Hence              a,bF,   α1,β1W1aα1+bβ1W1
Also                   W2 being a subspace.
a, bF and α2,β2W2   aα2+bβ2W2
Thus               aα+bβ=(aα1+bβ1)+(aα2+bβ2)W1+W2
Since           a,bєF  and  α,βєW1+W2   aα+bβєW1+W2
           W1+W2 is a subspace of V.

0 comments:

Post a Comment