Statement:-
The intersection of any two
sub-spaces of a vector space is also a subspace of the same vector space.
Proof:-
Let V be a vector space over the
field F and W1 and W2 be its subspaces.
∵ 0єW1 and 0єW2
⇒ 0єW1∩W2
∴ W1∩W2≠ф
Let a,bєF & α,βє W1∩W2
αє W1∩W2⇒ αєW1 & αєW2
and βє W1∩W2⇒ βєW1
& βєW2
Hence W1 is a subspace
a,bєF and α,βєW1 ⇒ aα+bβєW1
Also W2 is a subspace
a,bєF & α,βєW2 ⇒ aα+bβєW2
∴ aα+bβєW1 & aα+bβєW2
∵ a,bєF and α,βє W1∩W2 ⇒ aα+bβєW1∩W2
Thus W1∩W2 is a vector subspace.
0 comments:
Post a Comment