Monday, 1 July 2013


Statement:-
 The intersection of any two sub-spaces of a vector space is also a subspace of the same vector space.

Proof:-
 Let V be a vector space over the field F and W1 and W2 be its subspaces.

                      0єW1 and 0єW2  0єW1W2
                        W1W2≠ф
Let                     a,bєF & α,βє W1W2
αє W1W2  αєW1 & αєW2
and              βє W1W2  βєW1  & βєW2
Hence                W1 is a subspace
a,bєF  and   α,βєW1    aα+bβєW1
Also                   W2 is a subspace
a,bєF  & α,βєW2   aα+bβєW2
               aα+bβєW1 & aα+bβєW2
                 a,bєF  and α,βє W1W2   aα+bβєW1W2
Thus W1W2 is a vector subspace.

0 comments:

Post a Comment