Monday, 1 July 2013


Statement:-

The union of two subspace of a vector space is a subspace iff one each contained.

Proof:-

Let V be a vector space over the field F.Let W1 and W2 be its subspaces such that either
W1⊆W2                    or          W2⊆W1
If                   W1⊆W2          then

W1W2=W2
Since,                   W2 is a subspace.
Hence                  W1W2 is also a subspace.
Again,                if  W2⊆W1
then                     W1W2=W1
Since,            W1 being a subspace.
Hence           W1W2 will also be asubspace.
Conversally:-
Let W1 and W2 be subspaces of V such that W1W2 be also a subspace.
Let if possible W1⊈W2      or  W2W1
Since     if         W1⊈W2
    there exists      αєW1 and α∉W2
But                             α∊W1∪W2
If                                 W2W1
   there exists       βW2 and βW1
But                                  βW1W2
Hence                 W1W2 is a subspace.
Since              αW1W2   ,     βW1W2
                    α+βW1     or    α+βW2
Let                  α+βW1
Hence            α+βW1   and  αW1
                   (α+β)-αW1
                      β∊W2
Which is contradiction that  β∉W1
Let                    α+β∉W2
Since                α+β∊W2   and β∊W2
                     (α+β)-βW2
                                α∊W2
Which is contradiction that  α∉W2
Hence                W1⊆W2    or  W2⊆W1                  Proved

0 comments:

Post a Comment